This is a 32-lecture course, with each lecture being about 45 minutes, given by Chris Godsil. Note that the 17th lecture was not recorded, but slides are at least available for it. The other 31 lectures are still of interest, but this needs to be known.

This course will provide an introduction to problems in quantum computing that can be studied using tools from algebraic graph theory. The quantum topics will relate to quantum walks and to quantum homomorphisms, automorphisms and colouring. The tools from algebraic graph theory include graphs automorphisms and homomorphisms, spectral decomposition and generating functions.

Prerequisites: I will assume a solid background in linear algebra and knowledge of what a permutation group is. Other topics will be covered in class, or in the notes. I will assume the knowledge of physics I had when I started on this topic, that is, no knowledge.

  1. Lecture 1
  2. Lecture 2
  3. Lecture 3
  4. Lecture 4
  5. Lecture 5
  6. Lecture 6
  7. Lecture 7
  8. Lecture 8
  9. Lecture 9
  10. Lecture 10
  11. Lecture 11
  12. Lecture 12
  13. Lecture 13
  14. Lecture 14
  15. Lecture 15
  16. Lecture 16
  17. Lecture 17
  18. Lecture 18
  19. Lecture 19
  20. Lecture 20
  21. Lecture 21
  22. Lecture 22
  23. Lecture 23
  24. Lecture 24
  25. Lecture 25
  26. Lecture 26
  27. Lecture 27
  28. Lecture 28
  29. Lecture 29
  30. Lecture 30
  31. Lecture 31
  32. Lecture 32

These videos were produced by the Fields Institute, as a graduate course (link to course page).