A classical question in the theory of transformation groups asks which finite groups can act freely on a product of spheres. For instance, Oliver showed that the alternating group A4 can not act freely on any product of two equidimensional spheres.
I will report on joint projects with Henrik Rüping and Ergün Yalcin and explain that for 'most' dimensions m and n, there is no free A4-action on Sm × Sn and whenever there exists such a free action, then the corresponding cochain complex with mod 2 coefficients is rigid: its equivariant homotopy type only depends on m and n.
This involves an equivariant extension of Carlsson’s BGG correspondence in order to classify perfect complexes over 𝔽2[A4] with 4-dimensional total homology.
